The team’s research themes are at the interface between soft matter, fluid dynamics and nanosciences. It combines experiments, theory and numerical modelling to explore transport mechanisms at the interfaces, from macroscopic to molecular scales. Her recent activities focus in particular on Nanofluidics i.e. the nano-fluidic transport in nanopores, nanotubes, 2D materials, and aim to highlight the sometimes exotic properties of transport at these ultimate scales. She also explores mechanical properties at nanoscale using atomic force microscopes specifically developed in the laboratory. The unexpected phenomena that emerge at these scales make it possible to explore new avenues in the fields of energy and desalination. A start-up company, Sweetch Energy, has emerged from the team’s work in these subjects.
Lately the team has predicted a new quantum contribution to the solid-liquid friction force, that results from the coupling of water charge fluctuations to the electronic excitations within the solid. Eventually this new theory has rationalized the experimental observation of radius-dependent water slippage in carbon nanotube. More importantly this unravels a paradigm change for nanoscale hydrodynamics that the team is now exploring within an european projet “ERC Synergy n-aqua” shared with
Mainz and Cambridge teams.
Job offer
Funded PhD offer: “Reactive solid-liquid interfaces in operando“
2D metal carbides called MXene are emerging materials for energy-related applications as they can acquire huge charge in aqueous electrolytes and for sustainable electro-catalytic applications as they can integrate SAC (Single Atom Catalyst) and perform as well as expensive referenced electrodes. Consequently, a subtle interaction between the electrons of the metallic MXene and the ions and/or small molecules in the aqueous solvent has yet to be discovered through realistic simulations of the solid/liquid interface at the electronic (quantum) scale. This theoretical project will be carried out in close collaboration with the experimental part of our Micromegas team.
The PhD student will participate in the FLUXIONIC Marie Sklodowska-Curie PhD network, an interdisciplinary European network bringing together academic and industrial partners in 8 countries on the control of water and ion transport (and more generally of soft matter) on the nanometric scale (https://www.fluxionic.org/). Please note: there are strict mobility conditions to be met before you can apply (you must have been resident in France for less than 12 months at the start date of your thesis contract (planned for 01/10/2024 but flexible).
The PhD student will participate in the FLUXIONIC Marie Sklodowska-Curie PhD network, an interdisciplinary European network bringing together academic and industrial partners in 8 countries on the control of water and ion transport (and more generally of soft matter) on the nanometric scale (https://www.fluxionic.org/). Please note: there are strict mobility conditions to be met before you can apply (you must have been resident in France for less than 12 months at the start date of your thesis contract (planned for 01/10/2024 but flexible).
Supervisor & contact: Marie-Laure Bocquet
News
<events
Last publications
Poles
Theory
Experimental
Innovation
Team Members
Team Leader
Post-doctoral Fellows
Ph.D. Students
Technical staff
Location and Access
École Normale Supérieure
24 rue Lhomond, 75005 Paris
Room LS161
Institut Pierre-Gilles de Gennes
6 rue Jean Calvin, 75005 Paris
3rd floor